LBL DSD Group Presentation

pktd: A Packet Capture and Injection Daemon

José María González, chema@cs.berkeley.edu
Vern Paxson, vern@icir.org

ICSI Center for Internet Research / EECS Department, U.C. Berkeley

Overview

- measurement infrastructures
- deployment issues
- pktd
- control mechanisms
- details

Measurement Infrastructures

- measurement infrastructure (MI) definition
 - compare to single-point measurements
- active vs. passive
- examples
 - NPD
 - O NIMI
 - Surveyor

- trust
 - o scalable?

- trust
- client requirements vs. host owner concerns

- trust
- client requirements vs. host owner concerns
- mechanisms (granularity)
 - user/group/world, rwx mechanism (BPF on BSD)
 - coarser (Linux)

- trust
- client requirements vs. host owner concerns
- mechanisms (granularity)
- administrative hassle

- trust
- client requirements vs. host owner concerns
- mechanisms (granularity)
- administrative hassle
- resource control
 - need enforcement point

- trust
- client requirements vs. host owner concerns
- mechanisms (granularity)
- administrative hassle
- resource control
- provide tools that automate trust
 - provides trust to both parties
 - increase MI value

pktd

- sole trusted, privileged entity
 - full NIC access
- multiplexes the resource among clients
 - clients must request measurements to pktd
 - pktd implements mechanisms to grant/deny per-client access
 - host owner decides policies

pktd (cont.)

pktd (cont.)

API call	Parameters
wire_init	filter, snaplen, other
wire_done	pdd, ps
wire_setfilter	pdd, filter, other
wire_activity	pdd, cb, user_data
wire_inject	pdd, ip

pktd (cont.)

- advantages
 - only entity host owners need trust
 - static
 - finer granularity
 - more efficient use of resources (packet filter access)

pktd Control Mechanisms

- per-client tuning
- access type
 - capture vs. injection
- traffic type
- traffic contents
- resource control

Traffic Type Mechanisms

- which packets can be accessed
 - SSH may be OK
 - telnet is a no-no
- implementation
 - use per-client tcpdump expressions
 - port ssh and not port telnet
 - all captured traffic must match the client filter

Traffic Type Mechanisms (cont.)

- advantages
 - convenient
 - easy to implement
 - installed expression = client expression AND requested expression

Traffic Contents Mechanisms

- which packet headers/fields can be accessed
- protocols
 - IP/TCP may be OK
 - HTTP is more risky
- protocol fields
 - IP TTL is normally OK
 - IP src/dst address poses privacy concerns

Traffic Contents Mechanisms (cont.)

- implementation
 - per-client snaplen control
 - 40 bytes to ensure IP/TCP, and no HTTP
 - per-client, per-protocol mask
 - mask defines accessible fields
 - want finer access (trace anonymizing)

Implementation

- privileged daemon
- 12K lines of C code over pcap/libnet
- Linux, FreeBSD, Solaris
- heavy use (SCNM project)

Performance Issues

- compare model: tcpdump
 - 1 client over pktd = tcpdump
 - full 90-byte headers in 832 Mbps streams
- interrupt coalescence
- careful buffer management
 - standard C stdio is not optimized for small writes
- BPF kernel buffer size

Performance Issues (cont.)

- compression à la CSLIP
 - self-contained (no link-layer info)
 - need compress timestamps
 - cycles more important than space
 - o may be lossy!

Summary

- pktd encourages safe participation in MIs
- pktd offers fine-privilege granularity and permits host-specific policies
- clients benefit from a greater MI availability
- performance is not degraded

Istdio Performance

tcpdump vs. pktd Performance

